
Abstract
Dynamic replication algorithms aim at allocating,

migrating and deleting copies of an object over various
Internet hosts, according to the access patterns exhibited on-
line, so as to improve object proximity for the end-users and/
or load-balance the servers. Most of the existing algorithms
try to disseminate the objects of an entire Internet Service
Provider (ISP), without taking into account the needs and
characteristics of specific web sites with large commercial
value. In this paper we tackle the replication problem in an
Internet environment, inspired by the need of news agencies
and other information providers to include in their pages
multimedia content without incurring high access delays.
We consider an environment that consists of a central
multimedia repository and various physically dispersed
sites. We propose a cost model to formalize the replication
of multimedia objects located at the repository which can
result in decreasing the download time. Taking into account
implementation issues, such as the storage and processing
capacity constraints, the proposed replication policy is
evaluated and compared with alternatives including an ideal
LRU caching scheme. Qualitative comparisons with the
other replication schemes are reported as well.

1 Introduction
During page creation users can refer to distant sites

holding large multimedia objects (MOs), without
necessarily copying them locally. When a client accesses
such a page, separate HTTP requests are issued towards the
distant servers in order to download the MOs. Intuitively, we
can exploit this ability of concurrent downloads in order to:
i) save storage space by not copying all MOs locally, ii)
achieve load balancing among the servers, iii) decrease the
retrieval time. In this paper we propose an organizational
scheme for a company running sites across the world when
significant portion of multimedia data is shared among them.
Shared MOs are stored in a central repository. Web pages
containing objects from the repository are parsed locally and
the MOs referenced by them are split into two sets, one to be
downloaded from the local server and one from the
repository. The target is to minimize the maximum retrieval
time of these two parallel downloads with respect to the
servers storage and processing capacity limitations.

The rest of the paper is organized as follows: in Section
2 we present the system model in more details, Section 3
formalizes the problem of minimizing the response time
exhibited by a client as a constraint optimization one, while
Section 4 presents the replication algorithms. Section 5
describes our experimental studies and Section 6 discusses
the related work. Section 7 concludes the paper with a
summary and future extensions of this research.

2 System Model
We consider an environment that consists of one central

multimedia repository located at the company’s
headquarters and worldwide dispersed sites (local sites),
hosting pages from the company’s local departments. When

a client requests a web page, the HTTP request is received
by its local server which responds with the HTML
document. The client’s browser parses the document and
new requests are made using the URLs of the objects
contained in the page. These URLs may refer either to MOs
stored in the local site or in the repository. Clearly, storing
locally all MOs needed by the web pages can be infeasible
due to storage capacity constraints. Caching of multimedia
material contained in the most popular webpages seems a
more promising solution but has its own shortcomings.

To understand why the current caching schemes are not
able to efficiently tackle with a central multimedia
repository environment, we should note that these policies
consider the case of a central site whose pages are heavily
accessed and try to minimize the network traffic and the
latency experienced by users, by keeping the most popular
set of pages as close to the clients as possible. Initial HTTP
requests addressed to the central site are redirected towards
servers with better proximity to the clients. Regardless of the
part of the network where it occurs, see related work section,
any redirection strategy accounts for additional latency.
Since in our case clients send their requests for HTML
documents to the local servers and not to the central site, the
above latency can be avoided.

In contrast, replication policies do not suffer from
redirection latencies while improving client-pages
proximity. Dynamic replication algorithms recently
proposed by the research community (see related work
section), focus on either minimizing network traffic, or load-
balancing the web servers. Our approach differs from the
above by targeting at minimizing the average response time
users perceive. To do this, we exploit the fact that a user
would experience faster response time if one part of the
objects was downloaded from the local server, while another
one from the repository, in parallel. To our best knowledge
this technique is not yet adequately addressed in the relevant
literature of caching/replication over the Internet.

Upon creation or update of an HTML file in a local web
site, the server parses the document and retrieves the URLs
of multimedia content. Based on statistics collected, such as
page access frequency, each local server decides for his web
pages which MOs should be downloaded locally and which
ones from the central repository. The above information is
included in a reference database together with the position of
the URLs in the HTML document. Upon the arrival of a
request for an HTML document to a local server, the local
server queries the reference database and replaces on the fly
the remote URLs with the local ones. This is necessary to
avoid having a client requesting from the repository an MO
that should be downloaded from the local server. Assuming
a fast indexing scheme for the reference database, the
computational latency occurred due to querying and
changing URLs on the fly is minimal compared to the
network latency due to request redirection from the
repository to the local site.

Replicating the Contents of a WWW Multimedia
Repository to Minimize Download Time

Thanasis Loukopoulos and Ishfaq Ahmad

Department of Computer Science
The Hong Kong University of Science and Technology, Hong Kong

0-7695-0574-0/2000 $10.00 � 2000 IEEE

3 The Cost Model
Let be thes local servers of the company,R be

the server of the central repository, the company’s
pages and the multimedia objects. Let
denote the HTML documents, where is related to . In
case a page includes more than one HTML document, we
treat the HTML parts of the page as one composite HTML
file. Let be the access frequency of during peak
hours, measured in requests/sec. A page can explicitly
require the download of a multimedia object (compulsory
MO) or include a link to it. It is up to the client to decide
whether to request any optional objects, (e.g., a music page
with links to wav files).

Let U be an (0,1) matrix such that iff
is compulsory for and 0 otherwise. is an matrix
such that denotes the probability that having
downloaded , will afterwards issue a request for the
optional object ; in case (compulsory object),

. A is an (0,1) matrix, such that iff
is hosted at and 0 otherwise (page allocation matrix). We
assume that a web page is allocated to exactly one server and
if multiple copies of it exist we treat each copy as a different
page. We defineX to be an (0,1) matrix such that

iff and once is requested, should
be downloaded from the local server. is an extension of
matrix X where an element is 1 iff or is
optional for and if requested (with probability

), it should be downloaded locally. Clearly in
case , must be stored at the server for which

.
Let be the average data transfer rate at which a

request to , is satisfied during peak hours and the
rate at which requests from the clients in the region of are
satisfied by the repository. Let , , denote the
processing capacities of andR, measured in HTTP
requests/sec. We also refer to the storage capacity of by
using . We use the same function, to denote the size
of and , all measured in bytes. Finally, we denote by

and the average values of the two
latencies, clients of experience when sending an HTTP
request to andR respectively. Without going in many
details these latencies are the summations of setting up a
TCP/IP connection plus the time spent by and R in order
to process an HTTP request. We are now able to define the
time it takes for a web page retrieval as the sum of the initial
latency and the actual transfer time for both the objects
requested locally and from the repository. Let
and denote the time required to transfer the
contents of stored at andR respectively. By using
persistent connections [22] HTTP requests are pipelined
over the same TCP/IP connection thus resulting to the
following expressions:

and hence the response time a user experiences, denoted
by is given as follows:

Having retrieved a page , the user can request any of
the optional objects referenced by it. Let be the
average number of optional objects a user requests from
page over a time period of one second. We define

to be the total response time a user experiences

in the requests. For each optional object
download, a new TCP/IP connection needs to be
established†, accounting for latency of either
(download from the local server) or (download
from the repository). Summing up the above remarks we end
up with the following equation:

By taking into account the capacity of the servers as well
as the storage space available, we can now state the problem
of minimizing the total response time users experience, as a
two objective constrained optimization one:

Assign 0, 1 values at matrix so as to minimize:

subject to the following main constraints:

Eq. 10 represents the storage capacity constraint for each
site, while Eq. 8 and 9 the processing capacity constraint for
the local sites and the repository respectively. By assigning

, positive weights to the target functions in Eq. 7 we
can restate the problem as a single target function
constrained optimization one. Hence, we refer to the
composite weighted target function byD. We claim without
providing detailed proof that the relevant decision problem
is NP-complete (proof be reduction to the (0,1) Knapsack
problem). We should note here that the above weight
assignment has well defined natural meaning, since the
retrieval time for a web page is more important than the time
for downloading optional objects.

We assumed that local servers download objects using a
constant average transfer rate. This assumption is closer to
reality if the available bandwidth at the server’s side acts as
a bottleneck during peak hours. On the other hand, if the
bottleneck is at another part of the network, e.g., clients
using an 28.8 KBps modem, then the above assumption may
not hold true. For this reason at the experimental evaluation
section the transfer rates at which requests are serviced, vary
significantly from the estimations used when deciding about
replica creation and are distinct for each HTTP request.
Another assumption made, is that the processing time for an
HTTP request is constant. Since we assumed peak hours,
i.e., almost fixed server utilization, the above approximation
is realistic. In general, the introduced model aims at
highlighting the efficiency of any replication policy that
takes into account the properties of Eq. 5 (i.e., concurrent
downloads) and provides a framework for constructing
algorithms that balance the downloading times, without
overloading any site or violating storage constraints. In the

S1…SS
W1…Wn

M1…Mm H1…Hn
H j Wj

f Wj() Wj

n m× U jk 1= Mk
Wj U′ n m×

U jk
′

Wj
Mk U jk 1=

U jk
′ 0= s n× Aij 1= Wj

Si

n m×
Xjk 1= U jk 1= Wj Mk

X′
Xjk

′ Xjk 1= Mk
Wj

U jk
′ 0 1,()∈

Xjk
′ 1= Mk Si

Aij 1=
B Si()

Si B R S, i()
Si

C Si() C R()
Si

Si
Size Si()

H j Mk
Ovhd Si() Ovhd R S, i()

Si
Si

Si

Time Si Wj,()
Time R Wj,()

Wj Si

Time Si Wj,() Ovhd Si() B Si()Size Hj() XjkB Si()Size Mk() 3()
k 1=

m

∑+ +=

Time R Wj,() Ovhd R S, i() 1 Xjk–()U jkB R Si,()Size Mk() 4()
k 1=

m

∑+=

Time Wj()
Time Wj() max Time Si Wj,() Time R Wj,(),{ } 5()=

Wj
f Wj M,()

Wj
Time Wj M,()

†. We consider the general case where users won’t request all the
optional MOs at the same time so already opened TCP connections
may be timed out. For this reason we also did not consider potential
parallelism in downloading optional objects (Eq. 6).

N Wj M,()

Ovhd Si()
Ovhd R S, i()

Time Wj M,() f Wj M,() U jk
′

Xjk
′

Ovhd Si() B Si()+ Size Mk()() +[{
k 1=

m

∑=

1 Xjk
′

–() Ovhd R Si,() B R Si,()Size Mk()+()] } 6()+

X′

D1 f Wj()Time Wj() D2 f Wj()Time Wj M,() 7()
j 1=

n

∑=∧
j 1=

n

∑=

Aij f Wj() 1 Xjk
k 1=

m

∑ f Wj M,() U jk
′

Xjk
′

k 1=

m

∑+ +

j 1=

n

∑ C Si() 1 i s≤ ≤() 8()∀≤

f Wj() U jk 1 Xjk–()
k 1=

m

∑ U jk
′

1 Xjk
′

–()
k 1=

m

∑+

j 1=

n

∑ C R() 9()≤

Aij Size Hj()
j 1=

n

∑ Size Mk() Wj with Aij 1=() X jk
′

1=()∧∃

k 1=

m

∑+ ≤

Size Si() 1 i s≤ ≤() 10()∀≤

α1 α2

0-7695-0574-0/2000 $10.00 � 2000 IEEE

following section we present such a policy.

4 The Algorithm

4.1 Motivation
A centralized approach to solving the replication

problem using linear programming would be inefficient for
a widely distributed system, since it incurs additional traffic
for statistic collection and would also be computationally
intensive. In our scheme, we let the local servers decide
which MOs should be kept and downloaded by them, given
the storage and processing capacity constraints. These
distributed decisions may result in overloading the
repository. In that case, an off-loading negotiation
mechanism between the repository and the local servers
takes place. The algorithm may be executed during off-peak
hours and may be coupled with any of the dynamic
scheduling policies proposed in the www literature (see
related work). The reason is that allocation decisions made
off-line using the past access patterns, may be inaccurate due
to the dynamic nature of the Web, e.g., breaking news.

4.2 Description
Each local server decides for each page which of the

MOs to store locally. This is done by first sorting the MOs
according to their size and then testing for each one in
decreasing size order whether local downloading would
result in smaller response time than downloading it from the
repository. If the local download is more beneficial, then a
copy of the object is kept and the expected response time of
the web page is updated accordingly. A description of the
algorithm is given as follows:

Storing all the outputed by the above algorithm objects
may not be feasible due to storage or processing capacity
constraints. We restore the storage capacity constraint by
using a greedy method, i.e., evaluating the negative impact
each MO deallocation causes in the target functionD and
removing the MO with the least negative effect. After each
deallocation we check whether we can reduce the download
time for pages previously marking the deallocated MO for a
local download. This is performed by taking advantage of
the fact that some MOs although stored in the server may not
be marked for a local download, since they may increase the

retrieval time. After deallocating one object, the retrieval
time of these pages may increase and marking the above
MOs for local downloads can now reduce it. In such a case
we alter the object partitioning for these pages and iterate the
process until the storage constraint is no longer violated.

For the processing capacity constraint restoration we
follow the same guideline, i.e., we check which (page, local
MO) download pair would have the least decrease in
performance if performed from the repository and mark it
accordingly. Again, we continue iterating until the constraint
is met. If through this process an object is marked in all the
pages as not to be downloaded locally, we deallocate it,
further reducing the storage space required. A formal
description of the above algorithms is not included here due
to space limitations. We should note though, that the
difference in D, which is our deallocation criterion, is
amortized over the size of an object when we restore the
storage constraint and over the difference between the new
workload and the required one, when we restore the
processing capacity constraint. This is done in order to make
our criterion more judicious over large and frequently
accessed objects.

Upon completion of the replication algorithm, each
sends a status message to the repository. This message
contains its free storage space , the local
processing capacity left and an estimation for the
workload that the current local assignment will impose to the
repository . Having collected all the status
messages, the repository checks if its estimated workload

will exceed its processing capacity . In such case
an off-loading algorithm allocates the excess workload back
to the local servers. Servers that have both free storage and
processing capacity available, are considered first for
allocating the extra workload. A description of the algorithm
in pseudocode follows:

Upon receiving from the repository the extra workload to
be added, every assigns more downloads to be
serviced locally. The criterion to use, is the same as in the
restoration of local processing capacity constraint, i.e., the

local downloads that result to the minimum
increase of response time. We should note here that storing
optional objects will have a positive effect, if as expected

PARTITION ()
MOarr[] =

/*MOarr stores the compulsory objects of */
Sort_by_Decreasing_Size (MOarr);
LocalDownload[] = ;

/*The time it takes for the local downloads. Initially, only the HTML
document should be downloaded*/

RemoteDownload[] = ;
/*The time it takes for the repository downloads. Initially, no objects are to

be downloaded*/
WHILE DO

obj = Take Next Object from MOarr;
/*Add the time to download the object in both the repository and the local

downloads*/
RemoteDownload[] += ;
LocalDownload[] += ;
IF (RemoteDownload[] < LocalDownload[]) THEN

/*Downloading the object from the repository is more beneficial. Restore
the time for local downloads. */

LocalDownload[] -= ;
;

/*X is the (0,1) allocation matrix as defined in the cost model (Sec. 3)*/
ELSE

RemoteDownload[] -= ;

Delete_from_MOarr(obj);
Store the ‘s that have at least one non-zero entry in X matrix.
Store all optional objects.

Wj
Mk U jk 1=(){ }

Wj

Wj Ovhd Si() B Si()Size Hj()+

Wj Ovhd R Si,()

MOarr NULL≠

Wj B R Si,()Size obj()
Wj B Si()Size obj()

Wj Wj

Wj B Si()Size obj()
Xjk 0=

Wj B R Si,()Size obj()
Xjk 1=

Mk

Si

Space Si()
P Si()

P Si R,()

P R() C R()

OFF_LOADING_REPOSITORY()
Collect_Status_Messages();

 = ;
WHILE () DO

;
;

;
IF () THEN

BREAK; /*CONSTRAINT CAN NOT BE RESTORED*/
 = ;
 = ;

IF () THEN

;
Send_Message(,);

ELSE

;
Send_Message(,);

;
Send_Message(,);

Collect_Answers();
 = ;

ENDWHILE

Send_Message(Off_Loading_END);

P R() P Si R,()∑
P R() C R()>

L1 Si Space Si() 0>() P Si() 0>()∧{ }=
L2 Si Space Si() 0=() P Si() 0>()∧{ }=
L3 Si Si L1∉() Si L2∉()∧{ }=

L1 ∅=() L2 ∅=()∧

P L1() P Si() Si L1∈(){ }∑
P L2() P Si() Si L2∈(){ }∑

P R() C R()–() P L1()≤
Si L1∈()∀

NewReq Si() P Si() P R() C R()–() P L1()⁄=
Si NewReq Si()

Si L1∈()∀
NewReq Si() P Si()=

Si NewReq Si()
Si L2∈()∀

NewReq Si() P Si() P R() C R()– P L1()–() P L2()⁄=
Si NewReq Si()

P R() P Si R,()∑

Si∀

Si Wj Mk,()

Wj Mk,()

0-7695-0574-0/2000 $10.00 � 2000 IEEE

. As long as , all objects that are either
stored already, or their storage would not result in capacity
violation are considered, until the new workload
requirement is achieved, or the storage capacity limit is
reached. When we explore the fact that for some

, even if is already stored in the local server it
is marked to be downloaded from the repository. If the
required workload level still can not be achieved, we check
if deallocating stored objects and allocating others can
increase the workload of the server to the required level.
Finally, if still can’t serve all the additional requests, it
sends a message to the repository with the number it could
satisfy and the fact that it now belongs to , i.e., not to be
considered in the algorithm. This can result in another phase
of exchanging messages.

5 Experimental Evaluation

5.1 Workload
We performed our experiments using a synthetic

workload with the below summarized attributes:

A number of previous papers on characterizing the
workload of web servers [16], [23] report that a small
percentage of pages accounted for a disproportionally large
number of requests (hot pages). In our workload 10% of
pages account for 60% of the requests. For the simulation we
partitioned the HTML documents in small, medium and
large sizes. We also did the same with MOs. Large size MOs
represent small video clips while medium and small size
objects represent audio and gif images. Since optional MOs
are viewed only when the client explicitly requests them, we
introduced a 10% probability that a user would be interested
in viewing one or more of them. We also set the number of
optional MOs an interested user requests, to 30% of the total
optional objects referred in the page.

Concerning the server and communication link
characteristics, we fixed the number of servers to 10 and

their processing capacity to 150 HTTP requests/sec. The
base value of the two overheads and
was set to vary between 1.275 and 1.775 sec. for each local
server and 1.975 - 2.475 sec. for the repository. These values
represent estimations with the average processing time for
HTTP requests at the local servers and the repository being
200 msec, the processing time overhead of our algorithm
varying between 1 and 1.5 secs. and average RTTs (Round
Trip Times) between clients and local servers/repository
being set to 50/200 msec., respectively.

Every arriving HTTP request is served using a fixed data
transfer rate which is defined for local servers from a
uniform distribution taking values between 3 Kbytes/sec.
and 10 Kbytes/sec. Requests arriving to the repository are
satisfied at a fixed transfer rate taking values from a uniform
distribution with minimum 0.3 Kbytes/sec. and maximum 2
Kbytes/sec. Clients geographically belonging to the same
local server, experience the same transfer rate at their
connections with the repository.

We generated 10,000 requests at each server. In order to
simulate real life situations where the actual transfer rates
and initial overheads differ from the estimations used when
deciding about the object placement, 60% of the requests
were satisfied from the local servers at a transfer rate %
within the estimation used; 30% were satisfied at a rate
between 1/2 and 1/3rd of the initial estimation and the rest at
a rate varying from 1/4th to 1/6th. The last 10% represents
cases of network congestion. Since the repository’s average
transfer rate is much lower compared to the local servers, we
decided to change it by only % compared to the
estimations used when deciding about the allocation. %
change was also used for the initial connection overheads of
the repository. Finally, the overhead of a request to the local
servers was varied by a -10% to a +50% factor. Overall, the
rational behind decreasing significantly the performance
when downloading objects from the local servers, while
keeping the network parameters of the repository within a
good range of the initial estimations is to test our policy
when initial estimations lead to intensive replication, while
the actual network attributes would require a more
conservative approach.

5.2 Performance Evaluation
We compared our policy with 3 different policies. The

first is a “download all from the repository policy” (Remote
policy), the second is a “download all from the local servers”
(Local policy) and the third is an ideal LRU caching/
redirection scheme with 0 redirection overhead. Constraints
of Eq. 8, 9, 10 were not applied to both the Remote and the
Local policy, while the LRU policy was subjected to only
the constraint of Eq. 8.

In the first experiment, we relaxed the local site’s
processing capacity constraint and varied the available
storage. We measured the average response times exhibited
under all policies and reported their relative values
compared to the results obtained by our policy when no
constraints were imposed. Figure 1 presents the average
results for 20 runs. We only plotted the LRU and our policy
since only these are affected by the storage space of local
sites. The remote policy resulted in 335% increased response
time while the Local policy in 23.8%. It is clear from the
figure that our policy outperforms the alternative LRU, with
the performance differences being more significant when
100% storage space is available (the last tick-mark in the
plot). At that point LRU’s performance is comparable to the
local policy and results in approximately 24% more retrieval
time compared to our policy, which is optimized since no

Table 1: Parameters used in experiments.

Parameter Value

Number of Local Sites (LS) 10

Number of Web Pages per LS 400-800

Hot Pages (accounting for 60% of traffic) 10%

Number of Compulsory MOs per Page 5-45

Number of Optional MOs per Page (10% of
pages have optional objects)

10-85

Number of MOs in the Network 15,000

Number of MOs in an LS 1,500-4,500

Small HTML size (35% of pages) 1K-6K

Medium HTML size (60% of pages) 6K-20K

Large HTML size (5% of pages) 20K-50K

Small MO size (30% of MOs) 40K-300K

Medium MO size (60% of MOs) 300K-800K

Large MO size (10% of MOs) 800K-4M

Number of Optional MOs requested per page. 30% of the total links in the page

Probability that a user will request one or
more optional MOs.

10%

Processing Capacity of LS 150 HTTPreq./sec.

Processing Capacity of Repository Infinite

Overhead at LS 1.275 -1.775 sec.

Overhead at Repository 1.975-2.475 sec.

Number of Page Requests per Server 10,000

(,) (2, 1)

B R S, i() B Si()< Si L1∈

Si L2∈
Wj Mk,() Mk

Si

L3

α1 α2

Ovhd Si() Ovhd R S, i()

10±

20±
20±

0-7695-0574-0/2000 $10.00 � 2000 IEEE

constraints are imposed. 100% storage with the synthetic
workload used, would require 1,8 GB cache size on average,
which is a reasonable demand. Another interpretation of
Figure 1 is that our policy achieves the same response time
with the Local and LRU, using around 65% of the capacity
the other strategies need (the performance of our policy with
65% storage is almost the same as LRU with 100% and the
local one). As the available storage decreases response times
from our algorithm and LRU are comparable but are still
much smaller compared to the Remote policy.

Figure 2 shows how our policy performs when the
processing power of local sites varies while the storage
capacity is 100%. The result is a double exponential curve.
Response time towards the end of the curve is only
marginally increased, since even with sites being able to
support only 60% of the arriving requests (the rest going to
the repository), the more traffic consuming objects were still
able to be downloaded locally. However, reducing the
processing capacity by less than 60% seems to have an ever
increasing impact on response time, until the later becomes
equal to the value of the remote policy (for 0% processing
capacity).

Figure 3 shows the performance of our policy when
central processing capacities are fixed to 90%, 70% and
50%. With local processing capacities of 70% and more,
even in the case when the repository can only serve 50% of
the requests, the response time of our policy is acceptable
(around 40% more than the unconstrained one). On the other
hand, when local capacities drop to 50%-60%, even in the
less demanding case of 90% central capacity, the rise in
response time is significant. This, in terms, means that local
processing capacities affect the performance of our
algorithm more than the repository’s processing power.

Even though we set zero redirection overhead for LRU
and Local policies, the gains from the proposed policy were
substantial (outperforming both policies in most cases). The
proposed policy performed well in all three experiments
even when the network attributes (latency, transfer rate)
significantly vary from the estimations used during
allocation decisions.

6 Related Work and Comparison
There are two issues in replication of Web content. The

first is deciding what to replicate where, also called the file
allocation problem. The second is the design of the
redirection method that allows a request to be satisfied by a
server other than the one originally addressed to. Various
redirection schemes were proposed in the relevant literature,
some of which being also available as commercial products.
IBM’s Network Dispatcher [3] and CISCO's Local Director
[2] map the domain name of the Web site to the IP of a
multiplexing router that is placed in front of a server farm.
Both schemes are better applied when the servers of the farm

are not geographically distributed. Authors in [5] propose a
policy that propagates information about the replication
scheme in HTTP headers and thus, requires changes to both
servers and clients. In the scheme proposed in [4] URLs
refer actually to Java applets that incorporate knowledge
about the redirection procedure and the current replica set.
Although, this solution scales well and requires no changes
to clients, it incurs the additional overhead of downloading
and running the applet. In [6] and [7] the ISP's DNS server
returns the IPs of the servers holding the requested object.
Server selection is performed by the client's DNS resolver
after probing the candidate servers. The DNS infrastructure
is also used for redirection in [1], only that this time server
selection takes place in the site’s DNS server. Various
methods for selecting among replicated servers were
extensively discussed for example in [9] and [10], while
scheduling algorithms varying from blind round-robin to
more sophisticated feedback methods, were developed by
the research community [8]. Unfortunately, all DNS-based
redirection methods possess the drawback that caching of
DNS responses can degrade their performance by either
making them to select a stale replica, [6], [7] or an
overloaded server [1].

The need for an efficient redirection mechanism has been
recognized by the WWW Consortium resulting in proposing
the HTTP_DRP (Distribution and Replication Protocol)
[11]. Among others, it introduces new functionalities with
which a server is able to redirect a client elsewhere.
HTTP_DRP can achieve per object replication, while in
most of the above strategies the whole site contents should
be kept by each server. The overhead though of an additional
HTTP request can not be neglected. DistributedDirector by
CISCO [1] and JetStream by WindDance [12] implement
similar functionalities. Overall, the redirection schemes
described, account for at least the additional latency of
forming an initial network connection before connecting to
the required server. Obviously, most strategies cause much
more overhead than the establishment of one TCP
connection, while some of them involve coarse grain
replication and thus, are inappropriate for our purpose. In
our policy redirection is performed at the server’s side when
sending the HTML document and includes only
computational latency. Moreover, this latency is amortized
over all the objects needed to be downloaded locally, while
the other schemes need to redirect each HTTP GET request
separately.

The approaches of [13], [14] and [15] focus on dynamic
replication. In [13] the authors propose an algorithm called
ADR that changes the replication scheme of an object in
order to minimize the network traffic due to reads and
updates. To do so they impose a logical tree structure for the
network, which in practice, would require separate TCP
connections for each node pair, accounting for significant

Figure 1: Plot of respose time versus local
storage capacity.

Figure 2: Plots of response time versus
local processing capacities.

Figure 3: Plots of response time versus
local processing capacities.

0-7695-0574-0/2000 $10.00 � 2000 IEEE

overhead. The algorithm proposed in [14] load balances the
workload among replicas. It burdens, however, routers with
keeping track of the replicas. Authors in [15] propose a
general scheme that creates, migrates and deletes replicas so
as to improve the client's proximity to them without
overloading any of the servers. The use of threshold values
though, makes the performance of the scheme dependent
upon their chosen values. In addition to this, it requires a
rather high amount of messages to be exchanged between
hosts, when replica creation/migration is needed.

The above approaches are not so suitable for a central
multimedia repository environment because their scope is
too broad and dynamic, targeting the entire set of objects
moving inside an ISP. Their performance is highly
dependent on the time period of algorithm execution. A
small time period can result in creating replicas at one time
slot only to delete them in the next one, while a large in
changing the replication scheme too slowly to make the
algorithms truly adaptive. These trade-offs and design
problems seem unavoidable when dynamic replication is
needed. In our system, static replication seems a better
choice (see [21] for a discussion on the use of static vs.
dynamic replication). Clients can access an MO either from
the repository or from a local server. This reduces the
difficulty of deciding where and how many replicas should
be created, while central control can be maintained if
needed. Prepartitioning of objects so as to maximize the
benefits of concurrent downloads is another important
aspect of our work. In the experimental section we show that
this policy outperforms both the download-all-locally and an
LRU network caching scheme even when the available
bandwidth varied significantly from the estimation used
when running the allocation algorithm. The idea of
analyzing the page structure is also used in the HTTP_DRP
[11] protocol. The target there though, is to create an index
file for each page and assign a Uniform Resource Identifier
(URI) to every object of the page, in order to download only
the objects that have changed during page refreshment.

For the file allocation problem, substantial work has
been done in the past. A thorough survey can be found in
[17]. In the database field, file allocation was studied in [19].
The problem was studied for the case of a multimedia
database [20]. A distributed policy was proposed to solve the
problem [18]. Most works in this context assume decisions
to be taken centrally [19], [20], focus on modelling the
problem as a linear programming one [17], or lack details on
how to implement the proposed algorithms over the Internet
[18]. Our work benefits from the above results in building a
file allocation-like cost model, but also proposes a
decentralized replication algorithm that considers
implementation details on where and how to perform
redirection.

7 Conclusions
In this paper we proposed a replication/redirection

scheme to increase the availability of a company’s web
pages, when they include heavy multimedia objects. Under
a wide range of the network attributes, such as the latency
and transfer rate, our policy outperformed in most cases an
ideal LRU caching scheme.

References
[1] CISCO DistributedDirector. White paper at http://

www.cisco.com/warp/public/cc/cisco/mkt/scale/distr/tech/
dd_wp.htm.

[2] Scaling the Internet Web Servers. White paper at http://

www.cisco.com/warp/public/cc/cisco/mkt/scale/locald/tech/
scale_wp.htm

[3] NetDispatcher: A TCP Connection Router. White paper at
ftp://ftp.software.ibm.com/software/network/dispatcher/
whitepapers/research_tr.pdf.

[4] C. Yoshikawa, B. Chun, P. Eastham, A. Vahdat, T. Anderson
and D. Culler, "Using smart clients to build scalable services",
in 1997 Annual Technical Conference, USENIX, Jan. 6-10,
1997, Anaheim, CA, pp. 105-117.

[5] M. Baentsch, L. Baum, G. Molter, S. Rothkugel and P. Sturm,
"Enhancing the web infrastructure - from caching to
replication", IEEE Internet Computing, pp. 18-27, Mar-Apr
1997.

[6] M. Beck and T. Moore, "The Internet-2 distributed storage
infrastructure project: An architecture for internet content
channels.",in 3rd Int. WWW Caching Workshop, Manchester,
UK, June 1998.

[7] S. Bhattacharjee, M. Ammar, E. Zegura, V. Shah and Z. Fei,
"Application-layer anycasting.",in INFOCOM 1997.

[8] 9. M. Colajanni, Ph. S. Yu and D. M. Dias, "Scheduling
Algorithms for Distributed Web Servers.",in Proc. 17th IEEE
International Conf. On Distributed Computing Syatems, May
1997.

[9] R. Carter and M. Crovella, "Server selection using dynamic
path characterization in Wide-Area Networks",in IEEE
INFOCOM 1997.

[10] M. Sayal, Y. Breitbart, P. Scheuermann and R. Vingralek,
"Selection algorithms for replicated web servers.",Workshop
on Internet Server Performance, June 1998.

[11] "The HTTP Distribution and Replication Protocol", WWW
Consortium, at: http://www.w3.org/TR/NOTE-drp.

[12] WindDance Networks Corp. "JetStream" at http://
www.winddancenet.com/jetstream/index.html.

[13] O. Wolfson, S. Jajodia and Y. Huang, "An Adaptive Data
Replication Algorithm",ACM Trans. On Database Systems
(TODS), Vol. 22(4), June 1997, pp. 255-314.

[14] A. Heddaya and S. Mirdad, "WebWave: Globally Load
Balanced Fully Distributed Caching of Hot Published
Documents.", in Proc. 17th Intl Conf. On Distributed
Computing Systems.

[15] M. Rabinovich, I. Rabinovich, R. Rajaraman and A.
Aggarwal, "A dynamic object replication and migration
protocol for an Internet hosting service."IEEE Int. Conf. on
Distributed Computing Systems, May 1999.

[16] M.F. Arlitt and C.L. Williamson, “Internet Web Servers:
Workload Characterization and Performance implications”,
IEEE/ACM Trans. on Networking, Vol. 5, No. 5, pp. 631-645,
Oct. 1997.

[17] L.W. Dowdy and D.V. Foster, “Comparative Models of the
File Assignment problem”, ACM Computing Surveys,
Vol.14(2), June 1982.

[18] B. Awerbuch, Y. Bartal and A. Fiat, “Optimally-Competitive
Distributed File allocation”, 25th Annual ACM STOC,
Victoria, B.C., Canada, 1993, pp. 164-173.

[19] P.M.G. Apers, “Data Allocation in Distributed Database
Systems,”ACM Trans. Database Systems, 13(3), Sep. 1988,
pp. 263-304.

[20] Y.K. Kwok, K. Karlapalem, I. Ahmad and N.M. Pun, “Design
and Evaluation of Data Allocation Algorithms for Distributed
Database Systems”,IEEE Journal on Sel. areas in
Commun.(Special Issue on Distributed Multimedia Systems),
Vol. 14, No. 7, pp. 1332-1348, Sept. 1996.

[21] M. Rabinovich, “Issues in Web Content Replication”,in Data
Engineering Bulletin,Invited Paper, Vol.21 No.4, Dec. 1998.

[22] J. Mogul, “The case for persistent connection HTTP.”,Proc.
ACM SIGCOMM’95, Aug. 1995, pp. 299-313.

[23] A. Bestavros, “WWW Traffic Reduction and Load Balancing
through Server-based Caching”, IEEE Concurrency: Special
Issue on Parallel and Distributed Technology, Vol.5, pp. 56-
67, Jan.-Mar. 1997.

0-7695-0574-0/2000 $10.00 � 2000 IEEE

